Leg design in hexapedal runners.

نویسندگان

  • R J Full
  • R Blickhan
  • L H Ting
چکیده

Many-legged animals, such as crabs and cockroaches, utilize whole-body mechanics similar to that observed for running bipeds and trotting quadrupedal mammals. Despite the diversity in morphology, two legs in a quadrupedal mammal, three legs in an insect and four legs in a crab can function in the same way as one leg of a biped during ground contact. To explain how diverse leg designs can result in common whole-body dynamics, we used a miniature force platform to measure the ground reaction forces produced by individual legs of the cockroach Blaberus discoidalis. Hexapedal runners were not like quadrupeds with an additional set of legs. In trotting quadrupedal mammals each leg develops a similar ground reaction force pattern that sums to produce the whole-body pattern. At a constant average velocity, each leg pair of the cockroach was characterized by a unique ground reaction force pattern. The first leg decelerated the center of mass in the horizontal direction, whereas the third leg was used to accelerate the body. The second leg did both, much like legs in bipedal runners and quadrupedal trotters. Vertical force peaks for each leg were equal in magnitude. In general, peak ground reaction force vectors minimized joint moments and muscle forces by being oriented towards the coxal joints, which articulate with the body. Locomotion with a sprawled posture does not necessarily result in large moments around joints. Calculations on B. discoidalis showed that deviations from the minimum moments may be explained by considering the minimization of the summed muscle forces in more than one leg. Production of horizontal forces that account for most of the mechanical energy generated during locomotion can actually reduce total muscle force by directing the ground reaction forces through the leg joints. Whole-body dynamics common to two-, four-, six- and eight-legged runners is produced in six-legged runners by three pairs of legs that differ in orientation with respect to the body, generate unique ground reaction force patterns, but combine to function in the same way as one leg of a biped.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of the mechanical system in control: a hypothesis of self-stabilization in hexapedal runners

To explore the role of the mechanical system in control, we designed a two-dimensional, feed-forward, dynamic model of a hexapedal runner (death-head cockroach, Blaberus discoidalis). We chose to model many-legged, sprawled posture animals because of their remarkable stability. Since sprawled posture animals operate more in the horizontal plane than animals with upright postures, we decoupled t...

متن کامل

The Effect of Leg Specialization in a Biomimetic Hexapedal Running Robot

The biologically inspired Sprawl family of hexapedal robots has shown that fast and stable running is possible with only open-loop control. Proper design of the passively self-stabilizing leg structure has enabled these robots to run at speeds of up to 15 bodylengths/s and over uneven terrain. Unlike other running robots built to date, the Sprawl robots’ front and rear legs are designed to pref...

متن کامل

Philip Holmes Three - dimensional Translational Dynamics and Stability of Multi - legged Runners

The spring-loaded inverted pendulum (SLIP) is a simple, passivelyelastic two-degree-of-freedom model for legged locomotion that describes the center-of-mass dynamics of many animal species and some legged robots. Conventionally, SLIP models employ a single support leg during stance and, while they can exhibit stable steady gaits when motions are confined to the sagittal plane, threedimensional ...

متن کامل

Variable Stiffness Legs for Robust, Efficient, and Stable Dynamic Running

Humans and animals adapt their leg impedance during running for both internal (e.g. loading) and external (e.g. surface) changes. To date the mechanical complexities of designing usefully robust tunable passive compliance into legs has precluded their implementation on practical running robots. This work describes the design of novel, structure-controlled stiffness legs for a hexapedal running ...

متن کامل

A Minimal Model Describing Hexapedal Interlimb Coordination: The Tegotae-Based Approach

Insects exhibit adaptive and versatile locomotion despite their minimal neural computing. Such locomotor patterns are generated via coordination between leg movements, i.e., an interlimb coordination, which is largely controlled in a distributed manner by neural circuits located in thoracic ganglia. However, the mechanism responsible for the interlimb coordination still remains elusive. Underst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 158  شماره 

صفحات  -

تاریخ انتشار 1991